C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name : Physics-II

Subject Code : 4SC02PHY1		Branch: B.Sc. (All)	
Semester : 2	Date: 30/04/2019	Time: 02:30 To 05:30	Marks : 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

- a) Give the difference between longitudinal and transverse waves.
- **b**) What are Bravais and non-Bravais lattices?
- c) Differentiate between crystalline and amorphous materials.
- **d**) How does an intrinsic semiconductor differ from extrinsic semiconductors?
- e) What is a full wave rectifier?
- f) Define forward biasing condition of PN junction diode.
- g) Draw only the I \rightarrow V characteristic curve of PN junction diode.
- **h**) Drawing the symbol for a PNP transistor, identify its parts.
- i) Name the three configurations of a transistor.
- j) Which kind of diodes is used in the 7- segment displays?
- **k**) Complete the statement: Lattice + _____ = Crystal Structure.
- I) Name the different specific semiconducting materials with impurities used in the LEDs for emission of Red/Green and Yellow/ Red light beams?
- m) What is the main difference between a photodiode and a LED?
- **n**) Define surface tension.

Attempt any four (4) Questions from Question No.-2 to Question No.-8

Q-2		Attempt all questions	(14)
	(A)	Derive an expression for the velocity of transverse waves in a stretched	07
		string. Write the laws of vibrating string.	
	(B)	What is Bragg's law? Derive its formula.	07
Q-3		Attempt all questions	(14)
	(A)	Describe the 14 Bravais lattices with the 7 crystal systems.	07
	(B)	Describe the step-by-step procedure to obtain Miller indices with an	07
		example. Draw the miller planes for: (100), (101), (001), (010)	
Q-4		Attempt all questions	(14)
-	(A)	Write a short note on the different applications of X-rays in various fields.	06

(14)

	(B) (C)	Enumerate the properties of X-rays Name the temperature scales with their interchange transformation formulae.	05 03
Q-5	(A) (B) (C)	Attempt all questions Discuss Thermoelectric Thermometer giving its principle, construction, figure, working, merits and demerits. Briefly explain Specific heat and Specific heat capacity. A liquid is cooled from 55°C to 50°C in 5 minutes; and from 50°C to 46.5°C in the next 5 minutes. Determine the surrounding temperature.	(14) 06 05 03
Q-6	(A) (B) (C)	Attempt all questions Write a short note on "LED protecting circuit against reverse bias". Discuss multi-coloured LEDs. Explain the principle, construction, working, advantages, disadvantages and applications of a Solar Cell.	(14) 04 03 07
Q-7	(A)	Attempt all questions Draw a Common Emitter (CE) transistor configuration circuit using PNP and NPN transistors. Derive its input-output characteristics along with the graphs.	(14) 07
	(B)	Discuss in detail Photo Diodes, mentioning its principle, construction, working and characteristic graphs.	07
Q-8	(A)	Attempt all questions Calculate the minimum potential required to produce X-rays of frequency 3×10^{16} Hz. Calculate its wavelength.	(14) 04
	(B)	An X-ray beam of 0.4Å wavelength is incident on a crystal of lattice spacing 2Å Calculate Bragg's angle for the 1 st order diffraction	03
	(C)	An X-ray beam of energy 0.01 MeV is reflected from a crystal with inter planar spacing 3.14Å. Calculate the glancing angle for the 1 st order Bragg's spectrum. ($h = 6.62 \times 10^{-34} Is \& 1 \text{ eV} = 1.6 \times 10^{-19} I$)	03
	(D)	A flexible thread of length 90 cm and mass 1 gm is stretched by 3 kg mass tied at one end, vibrates in 3 segments. Calculate the transverse frequency.	04

